Abstract. MMP-9 plays an important role in the pathogenesis of AIS and predicts haemorrhagic transformation of the ischaemic focus. The aim of our study was to analyse both serum MMP-9 and its most specific endogenous inhibitor (TIMP-1) levels in AIS and to check whether HMG-CoA reductase inhibitor (simvastatin) affects the MMP-9/TIMP-1 ratio value. Fifty patients with AIS were randomly divided into two groups: Group I (N = 25) treated with 40 mg/day with simvastatin within 24 hours after the onset of stroke and Group II (N = 25) non-treated with statin. To evaluate MMP-9 and TIMP-1 serum levels, the ELISA method was used. The serum MMP-9 level was significantly elevated on the 7th day of stroke in both groups (from 668 to 862 ng/ml and 670 to 855 ng/ml, respectively, in Group I and II). The serum TIMP-1 level was also elevated on the 7th day of stroke in both groups but the results were not significant. The MMP-9/TIMP-1 ratio was elevated on the 7th day of stroke in both groups, but the result was significant only in the Group II (P < 0.01). These findings indicate that simvastatin given during 24 hours after the onset of stroke could have an influence on the MMP-9/TIMP-1 ratio during AIS.

Metalloproteinase-9 (MMP-9) belongs to Zn$^{2+}$-dependent inducible endopeptidases targeting extracellular proteins such as different types of collagen (mainly type IV), elastin, laminin, and moreover gelatin (Chandler et al., 1997). All MMPs are blocked by specific tissue inhibitors of matrix metalloproteinases (TIMPs) in the extracellular fluid (ECF). The most specific inhibitor of MMP-9 is TIMP-1 (Brew, 2000).

Received August 10, 2006. Accepted November 17, 2006.

This study was supported by allowance of the Department of Biochemistry and Molecular Biology, Medical University of Lublin.

Corresponding author: Jacek Kurzepa, Department of Biochemistry and Molecular Biology, Medical University in Lublin, Chodźki 1, 20-950 Lublin, Poland. Phone: (+48) 81 740 58 45, e-mail: kurzepa@onet.pl

Group II (N = 25) patients non-treated with statin; mean age was 72.1 years (SD 7.2; range 53-91 years), male/female: 12/13.

All patients were untreated with statins within the last 6 months before entering the study, without the history of autoimmunological diseases and cancer, had a normal level of serum total protein and renal function parameters. Patients with inflammatory symptoms and body temperature above 37°C during the first 7 days of observation were not included into the study. Written informed consent was obtained from each patient (or from family members when necessary). The Local Ethics Committee (Medical University of Lublin) accepted the protocol of the study.

Biochemical procedures

Blood samples were obtained at two time-points after the stroke: during the first 24 hours of stroke (before statin administration) and 7 days after the stroke onset. After centrifugation the serum was stored at –30°C no longer than 6 months. A commercially available ELISA kit was used to evaluate the total serum MMP-9 (R&D System, Minneapolis, MN) and TIMP-1 (R&D System) levels according to the producer’s instructions. The optical density was determined by using a microplate reader set to 450 nm (correction 540 nm). All measurements were performed in duplicate. Results were expressed in ng/ml.

Statistics

Paired t-test was performed to compare differences (MMP-9, TIMP-1 concentrations, MMP-9/TIMP-1 ratio) between the 1st and 7th day of the stroke. Differences between both groups in MMP-9, TIMP-1 concentrations and MMP-9/TIMP-1 ratio measured on the 1st day and 7th day of stroke were calculated by using Mann-Whitney’s U test. Statistically significant values were considered when P < 0.05. Statistical analysis was performed with the use of the computer-assisted statistical program GraphPad InStat v. 3.06.

Results

The total serum MMP-9 level on the 7th day of stroke was significantly higher compared to the level at 24 h in both groups. In Group I mean MMP-9 concentration was increased from 668 ng/ml [SD 473] at 24 h to 869 ng/ml [SD 504] on the 7th day of stroke (P < 0.05). In Group II serum MMP-9 concentrations were 670 ng/ml [SD 335] and 855 ng/ml [SD 381] at 24 h and the 7th day, respectively (P < 0.05) (Fig. 1). The serum TIMP-1 level was also elevated on the 7th day of stroke, but the results were not significant in both groups (from 304 ng/ml [SD 113] to 341 ng/ml [SD 146] in Group I and from 313 ng/ml [SD 73] to 348 ng/ml [SD 119] in Group II).

The MMP-9/TIMP-1 concentration ratio was elevated on the 7th day of stroke compared to 24 h in both groups, but the result was statistically relevant only in Group II. In Group I, the MMP-9/TIMP-1 ratio was increased from 2.23 [SD 1.39] to 2.54 [SD 1.37] (P > 0.05), but in Group II the ratio was increased from 2.19 [SD 1.13] to 2.62 [SD 1.27] (P < 0.01) (Fig. 2).

There were no statistical differences between both groups in MMP-9, TIMP-1 levels and MMP-9/TIMP-1 ratio measured on the 1st day and 7th day of stroke (P > 0.05).

Discussion

In our previous study we noticed an inhibiting influence of simvastatin on the serum MMP-9 (92 kDa) activity during the first week of ischaemic stroke (Kurzepa et al., 2006). The present study shows that early treatment with simvastatin (40 mg/day) started at

![Fig. 1. Total MMP-9 serum level on the 1st and 7th day of ischaemic stroke in Group I (treated with simvastatin) and Group II (non-treated with statin). * P < 0.05, paired t-test.](image1)

![Fig. 2. MMP-9/TIMP-1 ratio on the 1st and 7th day of ischaemic stroke in Group I (treated with simvastatin) and Group II (non-treated with statin). ** P < 0.01, paired t-test.](image2)
24 h of stroke does not affect the total MMP-9 serum level in patients with AIS. On the 7th day of stroke the serum MMP-9 level increased about 25–27% (P < 0.05) in both groups and it seems that simvastatin did not have any influence on this process. Simvastatin also did not affect the serum TIMP-1 level measured on the 7th day of stroke. In both study groups the increase of the TIMP-1 level was not statistically significant. Considering serum concentrations of both MMP-9 and TIMP-1 we evaluated MMP-9/TIMP-1 ratio, which could be an indicator of MMP-9 activity in vivo. Despite that MMP-9/TIMP-1 ratio increases on the 7th day compared to 24 h of stroke in both groups, only in Group II the difference was statistically relevant (P < 0.01) (13.9% and 19.6% increase on the 7th day in Group I and Group II, respectively). The coincidental increase of serum MMP-9 together with TIMP-1 concentration was more often found in the statin-treated group, so that the MMP-9/TIMP-1 ratio was not elevated to such extent as in the non-statin group.

The known mechanism of statin influence on MMP-9 activity depends mainly on the inhibition of activity of nuclear factor-κB (NF-κB), which is the key to expression of many proinflammatory cytokines and MMP-9 (Laws et al., 2004). TIMP-1 together with MMP-9 are ranked among inducible proteins for which expression of NF-κB plays a critical role. This study did not show any influence of early treatment with simvastatin on the serum MMP-9 and TIMP-1 levels in AIS, except for the expression of MMP-9, which was evaluated only at the protein level. However, further studies with larger study groups evaluating the role of statins on the MMP-9/TIMP-1 ratio in ischaemic stroke are needed.

References

