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Abstract. Myelodysplastic syndromes (MDS) repre-
sent a clinically and genetically heterogeneous group 
of clonal haematopoietic diseases characterized by a 
short survival and high rate of transformation to 
acute myeloid leukaemia (AML). In spite of this var-
iability, MDS is associated with typical recurrent 
non-random cytogenetic defects. Chromosomal ab-
normalities are detected in the malignant bone-mar-
row cells of approximately 40–80 % of patients with 
primary or secondary MDS. The most frequent chro-
mosomal rearrangements involve chromosomes 5, 7 
and 8. MDS often shows presence of unbalanced 
chromosomal changes, especially large deletions 
[del(5), del(7q), del(12p), del(18q), del(20q)] or losses 
of whole chromosomes (7 and Y). The most typical 
cytogenetic abnormality is a partial or complete de-
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letion of 5q- that occurs in roughly 30 % of all MDS 
cases either as the sole abnormality or in combina-
tion with other aberrations as a part of frequently 
complex karyotypes. The mechanisms responsible 
for the formation of MDS-associated recurrent trans-
locations and complex karyotypes are unknown. 
Since some of the mentioned aberrations are charac-
teristic for several haematological malignancies, more 
general cellular conditions could be expected to play 
a role. In this article, we introduce the most common 
rearrangements linked to MDS and discuss the po-
tential role of the non-random higher-order chroma-
tin structure in their formation. A contribution of the 
chromothripsis – a catastrophic event discovered 
only recently – is considered to explain how complex 
karyotypes may occur (during a single event).

I. Myelodysplastic syndromes – a brief 
introduction
Myelodysplastic syndromes (MDS) represent a di-

verse group of heterogeneous clonal bone marrow dis-
eases (Vardiman et al., 2009; Ades et al., 2014) that are 
associated with ineffective haematopoiesis, peripheral 
blood cytopoenias and increased risk of progression to 
acute myeloid leukaemia (AML) (Lindsley and Ebert, 
2013). Typical morphologic features of MDS involve, 
among others, defects in maturation in the myeloid se-
ries and rising amounts of blasts or ringed sideroblasts 
(Nimer, 2006). The annual incidence of MDS is about 
four cases per 100,000 people (Ades et al., 2014).

Although MDS may also appear in childhood as a 
consequence of various inherited predispositions, such 
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as Fanconi anaemia (Liew and Owen, 2011; Ades et al., 
2014; West et al., 2014), most cases burst sporadically 
and patients are diagnosed in their late 60s or early 70s, 
with a median age at diagnosis being 65–70 years; less 
than 10 % of patients are younger than 50 years. This 
might indicate that MDS originates from accumulation 
of unrepaired DNA defects caused by normal physio-
logical cellular processes (Kryston et al., 2011; Ghosal 
and Chen, 2013; Behrens et al., 2014). The life style, 
history of various diseases, and exposures to stress are 
therefore expected to contribute to MDS initiation. On 
the other hand, chromothripsis – a still mysterious pro-
cess of chromosome “explosion” (Stephens et al., 2011; 
Forment et al., 2012) – has recently been discovered as 
a single-step alternative to this multi-step development 
of complex cancer karyotypes and cancer disease. 

II. Recurrent chromosomal abnormalities 
in MDS

At the molecular level, MDS syndromes arise due to 
various types of genetic aberrations (Table 1) (Fer
nandez-Mercado et al., 2013; Huret et al., 2013); hence, 
different subtypes of MDS can be distinguished with a 
different molecular pathogenesis and various propensity 
for development of acute myeloid leukaemia (AML). 
On average, AML occurs in 10–15 % of MDS patients 
(reviewed e.g. in Ades et al., 2014; Visconte et al., 2014).

The most frequent initiating aberration in MDS is a 
large, unbalanced chromosomal deletion that can in-
clude even whole chromosome arms (Fig. 1) (Zemanova 
et al., 2008). This fact seriously complicates identifica-
tion of genes that are critically involved in MDS patho-
genesis. The deletions typically include long arms of 
chromosome 5 (Fig. 1), 7, and 20 but can affect different 
parts of other chromosomes as well, such as chromo-
somes 3q, 12p, 13q, 16q, 17p, 18q, and 20q (Haase et 
al., 2007). Except deletions, trisomies (8, less frequently 
11 and 21) monosomies (21 and 10), and other unba
lanced chromosomal changes (Haase et al., 2007) were 
reported. Chromosomes 5, 7, and 17 also frequently par-
ticipate in rearrangements that involve more chromo-
somes (Zemanova et al., 2008, 2014). Simple chromo- somal aberrations (CA) are typical of primary MDS 

(Fig. 1), while secondary MDS are frequently characteri
zed by very complex genomic rearrangements (C-CA) 
(similar to an AML karyotype in Fig. 2). 

II.1. Chromosome 5 
Interstitial deletions of 5q (Fig. 1) represent one of the 

most frequent cytogenetic aberrations in myeloid malig-
nancies and can be found in the majority of all de novo 
MDS cases (about 10–20 %) – either as an isolated ab-
normality (in 14 % of patients with clonal abnormali-
ties) (Fig. 1), together with one other abnormality (5 %), 
or as a part of a more complex karyotype (11 %) 
(Bernasconi et al., 2005; Haase et al., 2007; Fernandez-
Mercado et al., 2013). Patients carrying the interstitial 
deletion of 5q as a single defect are classified as a dis-
tinct MDS subcategory (5q- syndrome). Interstitial de-
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Table 1: Cytogenetic abnormalities in myelodysplastic syn-
drome (Greenberg et al., 1997; Bernasconi et al., 2006; 
Olney and Le Beau, 2007)

Recurring cytogenetic abnormalities
Abnormality Incidence
De novo MDS
- 5/del (5q)
- 7/del (7q)
Trisomy 8

Y
del(20q)
del(17q)

Complex (≥ 3 abnormalities)

6-20%
1-10%
5-10%
1-10%
2-5%
< 1-7%
10-20%

Treatment-related MDS
- 5/del (5q)
- 7/del (7q)

40%
40%

Fig. 1. An illustrative example of large recurrent deletions 
of the long arm of chromosome 5 in MDS. Figure shows 
the deletion del(5)(q13.3q33.3) detected by multicolour 
banding (m-band) in the karyotype of a patient suffering 
from MDS.

Fig. 2. An illustrative example of complex karyotypes as-
sociated with MDS/AML. Figure shows the karyotype 
47,XX,-3,del(5)(q13q33),+8,+11,der(16)ins(16;3)(q22;?)
t(3;16)(?;p13) that was discovered in an AML patient by 
multicolour fluorescence in situ hybridization (m-FISH). 
Each chromosome is identified by a specific colour.
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letions of 5q also appear with a similar frequency in 
acute myeloid leukaemia (AML) (Fig. 2). Interestingly, 
no differences in the breakpoints were noticed for these 
different diseases, which suggests the same origin of the 
rearrangements (Giagounidis et al., 2004). However, the 
mechanisms responsible for this specific impairment of 
the bone marrow in MDS and AML patients are still 
largely unknown, as discussed later. 

The position and size of 5q deletions depend on the 
study, methods used, and patients involved, but two 
commonly deleted regions (CDR) were identified: CDR1, 
which includes chromosomal bands 5q32-5q33.2 
(8.5 Mb), and CDR2, which encompasses bands 5q31.2-
-5q31.3 (1.92 Mb). While deletions of 5q32-q33 were 
mostly linked with the milder form of MDS (5q- syn-
drome), the region 5q31 was absent in many MDS pa-
tients with a high risk of progression into AML (Le Beau 
et al., 1993). Boultwood et al. (2010) demonstrated that 
the majority of all reported interstitial deletions of chro-
mosome 5 fall into one of the three following types: 
del(5)(q13q31), del(5)(q13q33), and del(5)(q22q35). In 
most cases, the deletions include all the three or two of 
these regions.

For the description of other frequent rearrangements 
and CDR on the remaining chromosomes, the reader is 
referred to the following original works: chromosome 7 
(Stephenson et al., 1995; Le Beau et al., 1996; Bernasconi 
et al., 2006; Olney and Le Beau, 2007; Haase, 2008; 
Adema et al., 2013) chromosome 20 (Dewald et al., 
1993; Bench et al., 2000; Bernasconi et al., 2006; Douet-
Guilbert et al., 2008; Huh et al., 2010; Okada et al., 
2012; Bacher et al., 2014); and chromosome 8 (Green
berg et al., 1997; Mishima et al., 1998; Paulsson and 
Johansson, 2007). 

III. Speculations on the mechanism respon
sible for formation of recurrent and complex 
chromosomal rearrangements in MDS

If we could better understand MDS at the molecular 
level, we could more efficiently develop the disease 
treatment and diagnostics. Nowadays, researchers can 
scrutinize genomes by modern methods of molecular 
cytogenetics. Although this methodological progress 
helped us to reveal some genes and functions of their 
products involved in MDS pathogenesis (Visconte et al., 
2014), we still poorly comprehend how the most fre-
quent aberrations form in MDS, and what is the relation-
ship between single and complex rearrangements.
The existence of recurrent chromosomal aberrations 

in MDS points to important roles of the affected regions 
in the disease pathogenesis, which is probably associat-
ed with clonal selection of these particular aberrations. 
In addition, this may also indicate that some chromo-
somes and their loci are more prone to chromatin dam-
age and rearrangements. As described, deletions of the 
q-arms of chromosomes 5 (Fig. 1), 7, and 20 markedly 
predominate in MDS. In addition to deletions, the same 

chromosomes can often also be affected by other types 
of aberrations, such as translocations. Multiple rear-
rangements of these chromosomes are detected in al-
most all patients with complex genotype changes. On 
the other hand, some other chromosomes or their parts, 
e.g. the short arms of chromosome 10, do not participate 
in MDS-associated chromatin rearrangements at all. 
Importantly, the most frequent chromosomal abnormali-
ties described above are characteristic not only for MDS, 
but also for some other blood malignancies (Fig. 2).

These facts suggest that both the formation and clonal 
selection of recurrent aberrations might be driven by 
more general cell conditions that are not limited to 
MDS. Concerning the formation of chromosomal le-
sions and rearrangements, we propose that a cell type-
specific or even individual cell-specific chromatin struc-
ture could play a role, potentially in combination with 
some other still unspecified/unknown factors. 

For instance, a chromatin structure that allows fragile 
sites to appear at specific chromosomal loci may sim-
plify “directed” chromatin damage and result in prefer-
ential formation of sui generis aberrations that may be 
consequently selected during clonal evolution of the 
cancer genome (Wang et al., 2008; Burrow, et al., 2009; 
Dillon et al., 2010; Monyarch et al., 2013). Indeed, the 
FRA5C and FRA5G fragile sites were discovered at q31 
and q35 loci of chromosome 5, respectively, and put 
into context with cancer development (Calin et al., 
2004; Monyarch et al., 2013). 

However, the size and breakpoints of interstitial dele-
tions at chromosome 5, chromosome 7, and chromoso
me 20 largely vary among patients, although some com-
mon chromosomal regions (CDR) are deleted in most 
cases. Hence, the locus-specific chromatin structure at 
higher levels of organization, together with global nuc
lear chromatin architecture, could also be reasonably 
suspected to participate in the formation of some typical 
chromosomal aberrations in MDS. Likely, various hier-
archical levels of chromatin organization might contri
bute to an additive or even synergistic effect.

Contrary to the older hypothesis, the cell nucleus is 
now considered as a highly organized organelle (re-
viewed in Manuelidis and Chen, 1990; Münkel et al., 
1999; Kozubek et al., 2002; Cremer and Cremer, 2010). 
Many researchers confirmed that genes are distributed 
non-homogeneously along the genome (Caron et al., 
2001) and that the dynamic chromatin structure regu-
lates its function (Kozubek et al., 2002; Goetze et al., 
2007). Historically distinguished chromatin domains 
are euchromatin and heterochromatin, which can be 
stained with Giemsa on metaphase chromosomes and 
recognized as the G-light and dark bands, respectively. 
While heterochromatic G-dark bands contain only about 
9.3 genes per megabase (Mb) of DNA and are tightly 
condensed, gene-rich G-bands (G-light) and very gene-
rich sub-telomeric T-bands (in humans) are largely de-
condensed and estimated to include 20 and 78 genes/
Mb, respectively (Bernardi, 1993). Genetically active 
chromatin and inactive chromatin also differ in their 
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protein composition. We have recently shown that inac-
tive condensed chromatin, abundant in heterochroma-
tin-binding proteins, is better protected by these proteins 
from induction of DNA double-strand breaks (DSB) by 
free radicals coming from water radiolysis (Falk et al., 
2008, 2010, 2014). On the other hand, repair of DSB in 
heterochromatin is more difficult and slower, and requires 
extensive chromatin decondensation to proceed (Kruhlak 
et al., 2006; Falk et al., 2007, 2008). This decondensa-
tion may locally increase chromatin mobility at the sites 
of heterochromatic DSB, which is followed by protru-
sion of these lesions into the nuclear subcompartments 
of low chromatin density or interchromatin space (Falk 
et al., 2007). This behaviour may increase the probabil-
ity of chromatin translocations between originally more 
distant partner loci (reviewed in Falk et al., 2010).

Genetically active chromosomal regions locate pref-
erentially closer to the nuclear centre, while the inactive 
ones mostly appear around the nucleolus and nuclear 
envelope (Cremer and Cremer, 2010). Importantly, the 
same rules also apply to chromatin organization inside 
chromosomal territories (Falk et al., 2002; Kozubek et 
al., 2002; Lukasova et al., 2002) where the centromere 
and heterochromatic loci usually occupy the envelope-
oriented part of the territory, while telomeres and active 
chromatin “protrude” to its inner part facing the nuclear 
centre (Falk et al., 2002; Kozubek et al., 2002; Lukasova 
et al., 2002). This causes functional and structural po-
larization of genetically active chromosomal territories, 
such as in chromosomes 17 and 19 (Kozubek et al., 
2002; Lukasova et al., 2002), which can potentially in-
troduce some tension in specific chromatin loci.

The polarization is less prominent or absent in territo-
ries with only low overall expression, like chromosomes 
18 and X (Falk et al., 2002; Kozubek et al., 2002). 
Therefore, chromosome-specific polarization forces may 
create chromatin loops that could perhaps contribute to 
preferential deletions of large chromatin blocks that 
contain specific CDR regions but arise at variable break-
points; in contrast, more precise breakage hotspots may 
be expected if MDS deletions appear due to a simple 
presence of chromatin fragile sites. 
Highly expressed loci, e.g. those containing clusters 

of co-regulated genes or so called Regions of Increased 
Gene Expression (RIDGE; Caron et al., 2001), may 
even protrude outside of their maternal territory, into the 
interchromatin space (Pombo et al., 1998; Volpi et al., 
2000; Branco and Pombo, 2006). Evidently, this phe-
nomenon in general might simplify formation of chro-
mosome breaks at specific loci as well.

The radial distribution of the whole chromosomal ter-
ritories in interphase nuclei also reflects their overall 
transcription levels; the active territories preferentially 
inhabit central concentric shells of the nucleus and vice 
versa (Kozubek et al., 2002; Cremer and Cremer, 2010). 
The width of radial shells occupied by particular chro-
mosomes is chromosome-specific (Kozubek et al., 2002). 
The higher-order chromatin structure therefore also de-
termines the probability of mutual chromatin interac-

tions and potentially chromosomal translocations be-
tween individual chromosomes (Kozubek et al., 1997; 
Lukasova et al., 1999; Neves et al., 1999; Falk et al., 
2010; Kenter et al., 2013).

The chance that particular loci would be involved in a 
translocation may further increase with their localization 
in the outer zone of the territory, characterized by more 
or less extensive intermingling between chromatin of 
neighbouring chromosomes (Branco and Pombo, 2006). 
Although the nuclear positions of specific loci are in 
general dictated by the location of their maternal chro-
mosome territories, some chromatin loops can protrude 
even outside the territory, as already discussed. Whether 
and to what extent the described observations can ex-
plain formation of frequent chromosomal aberrations in 
MDS is under investigation (Falk et al., unpublished).
Advanced MDS are accompanied by very complex 

chromosomal rearrangements. For instance, Zemanova 
et al. (2013, 2014) discovered that the true monosomy 
of chromosome 5, frequently reported in MDS, de facto 
does not exist. Rather, chromosome 5 seems to undergo 
extensive pulverization followed by translocation of the 
generated chromatin fragments to the “surrounding” 
chromosomes (Zemanova et al., 2013, 2014). What trig-
gers such chromosome “explosion” and why it affects 
only specific chromosomes or chromosomal loci repre-
sents an exciting subject of current research. Zemanova 
et al. (2014) suggest that initial deletion at the long arm 
of chromosome 5 destabilizes the chromosome, which 
is consequently easily prone to further damage. How
ever, chromosome fragmentation by chromothripsis has 
recently been described as a new and probably more 
common phenomenon in carcinogenesis (Stephens et 
al., 2011; Forment et al., 2012). Contrary to the current-
ly accepted theory of the multi-step tumour develop-
ment (Righolt and Mai, 2012; Burrell et al., 2013; 
Korbel and Campbell, 2013; Pihan, 2013; Zhang et al., 
2013), chromothripsis presupposes sudden multiple 
chromosome rearrangements that can result in complex 
karyotypes in a single step. What fraction of cancers can 
be initiated by chromothripsis is under investigation; 
nevertheless, it is already evident that the mechanism of 
chromothripsis must also be applicable to other cancer 
types, not always associated with large deletions. Hence, 
although chromosomal deletions might decrease the 
chromosome stability, chromothripsis is probably initi-
ated by a more general process in cancer cells.

A frequent and early event during the tumour genesis 
is replication stress (RS). RS is a dynamic chain of 
events that starts from acutely arrested replication forks 
with fully assembled replisomes. If RS persists, stalled 
forks are converted into collapsed forks (Lambert and 
Carr, 2005), specific nucleases cleave problematic DNA, 
and finally transform collapsed forks into DSBs (Fekairi 
et al., 2009; Forment et al., 2012). Recently, Toledo et 
al. (2013) suggested that long-lasting RS causes a repli-
cation catastrophe and cell death due to exhaustion of 
RPA proteins. RPA bind to ssDNA in replication forks 
and protect them from DNA breakage. Hence, the lack 
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of these proteins initiates massive and synchronized 
fragmentation of chromatin loops that are associated in 
the affected replication factory/factories and may origi-
nate from one or more chromosomes. The authors pro-
pose that this chromosome destruction mostly brings 
about complete disintegration of the nucleus, but may 
also represent a precursor of cancer-related genomic ab-
normalities. This may happen when DNA, previously 
“pulverized” by chromothripsis, is erratically reassem-
bled (Stephens et al., 2011; Forment et al., 2012). Never
theless, various mechanisms of chromothripsis have 
been put forward, so that further research is necessary to 
shed more light on the processes by which complex 
MDS karyotypes are formed. 

IV. Conclusion
MDS is associated with various chromosomal aberra-

tions among which interstitial deletions of the q arms of 
several chromosomes are the most prevalent. The same 
chromosomes also participate in other types of rear-
rangements that frequently form very complex MDS 
karyotypes. Some chromosomal abnormalities typical 
of MDS are also recurrent in other haematological ma-
lignancies. The cause of preferential selection or forma-
tion of these specific aberrations is not yet known. We 
propose that the higher-order chromatin structure, cell 
type-specific or even individual cell-specific, might rep-
resent one of important cellular factors that influence 
formation of MDS-associated deletions, translocations, 
and other genomic lesions. Complex MDS karyotypes 
may potentially arise as a consequence of chromothrip-
sis, which allows formation of complicated multiple 
rearrangements in a “single” step. However, more ex-
periments are needed to support the above-presented 
theoretical speculations.
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